us clinics lists
Oncotarget published "PIP3-binding proteins promote age-dependent protein aggregation and limit survival in C. elegans" which reported that Class-I phosphatidylinositol 3-kinase converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-triphosphate.
Proteins with domains that specifically bind that head-group are thus tethered to the inner plasma-membrane surface where they have an enhanced likelihood of interaction with other PIP3-bound proteins, in particular other components of their signaling pathways.
Null alleles of the C. elegans age-1 gene, encoding the catalytic subunit of PI3KI, lack any detectable class-I PI3K activity and so cannot form PIP3. These mutant worms survive almost 10-fold longer than the longest-lived normal control, and are highly resistant to a variety of stresses including oxidative and electrophilic challenges.
The authors used ligand-affinity capture to identify membrane-bound proteins downstream of PI3KI that preferentially bind PIP3. Computer modeling supports a subset of candidate proteins predicted to directly bind PIP3 in preference to PIP2, and functional testing by RNAi knockdown confirmed candidates that partially mediate the stress-survival, aggregation-reducing and longevity benefits of PI3KI disruption.
In this Oncotarget study, PIP3-specific candidate sets are highly enriched for proteins previously reported to affect translation, stress responses, lifespan, proteostasis, and lipid transport.
Комментарии
Отправить комментарий